Wednesday, September 17, 2008

NATURE AND NURTURE

MEMORY LEARNING PROCESS

Researchers have shown that there are some main processes or phase in learning. The first phase is the acquisition or encoding phase during which the learner takes in or assimilates the materials to be learned and stored them into his or her memory. The word Memory (psychology) is a process by which people and other organisms encode, store, and retrieve information. Encoding refers to the initial perception and registration of information while storage is the retention of encoded information over time. Retrieval refers to the processes involved in using stored information or the process of recalling information’s stored by the learner from his or her memory. Whenever people successfully recall a prior experience, they must have encoded, stored, and retrieved information about the experience. Conversely, memory failure—for example, forgetting an important fact—reflects a breakdown in one of these stages of memory.

Philosophers, psychologists, writers, and other thinkers have long been fascinated by memory. Among their questions: How does the brain store memories? Why do people remember some bits of information but not others? Can people improve their memories? What is the capacity of memory? Memory also is frequently a subject of controversy because of questions about its accuracy. An eyewitness’s memory of a crime can play a crucial role in determining a suspect’s guilt or innocence. However, psychologists agree that people do not always recall events as they actually happened, and sometimes people mistakenly recall events that never happened. Memory and learning are closely related, and the terms often describe roughly the same processes. The term learning is often used to refer to processes involved in the initial acquisition or encoding of information, whereas the term memory more often refers to later storage and retrieval of information. However, this distinction is not hard and fast. After all, information is learned only when it can be retrieved later, and retrieval cannot occur unless information was learned. Thus, psychologists often refer to the learning/memory process as a means of incorporating all facets of encoding, storage, and retrieval.

TYPES OF MEMORY
Information

Sensory Memory
Fleeting “snapshot”
Of sights and sounds


Attention

Working Memory
Temporary storage and
processing of information


Encoding Retrieval

Long-term Memory
Long-term and permanent
Storage of information









Simplified Model of Memory

Sensory Memory
Sensory memory refers to the initial, momentary recording of information in our sensory systems. When sensations strike our eyes, they linger briefly in the visual system. This kind of sensory memory is called iconic memory and refers to the usually brief visual persistence of information as it is being interpreted by the visual system. Echoic memory is the name applied to the same phenomenon in the auditory domain: the brief mental echo that persists after information has been heard. Similar systems are assumed to exist for other sensory systems (touch, taste, and smell), although researchers have studied these senses less thoroughly.
The sensory memory holds the information just long enough (one to three seconds) for us to decide whether to attend to it or not. If we don’t attend it and recognize it as meaningful or use or relevant, it gets lost or disappears. But if we attend to it and recognize it, it is then moved to the next level of memory for further processing.

Working Memory or Short-Term Memory
Psychologists originally used the term short-term memory to refer to the ability to hold information in mind over a brief period of time. As conceptions of short-term memory expanded to include more than just the brief storage of information, psychologists created new terminology. The term working memory is now commonly used to refer to a broader system that both stores information briefly and allows manipulation and use of the stored information. We can keep information circulating in working memory by rehearsing it. For example, suppose you look up a telephone number in a directory. You can hold the number in memory almost indefinitely by saying it over and over to yourself. But if something distracts you for a moment, you may quickly lose it and have to look it up again. Forgetting can occur rapidly from working memory. For more information on the duration of working memory, see the Rate of Forgetting section of this article.
Psychologists often study working memory storage by examining how well people remember a list of items. In a typical experiment, people are presented with a series of words, one every few seconds. Then they are instructed to recall as many of the words as they can, in any order. Most people remember the words at the beginning and end of the series better than those in the middle. This phenomenon is called the serial position effect because the chance of recalling an item is related to its position in the series. The results from one such experiment are shown in the accompanying chart entitled “Serial Position Effect.” In this experiment, recall was tested either immediately after presentation of the list items or after 30 seconds. Subjects in both conditions demonstrated what is known as the primacy effect, which is better recall of the first few list items. Psychologists believe this effect occurs because people tend to process the first few items more than later items.
Subjects in the immediate-recall condition also showed the recency effect, or better recall of the last items on the list. The recency effect occurs because people can store recently presented information temporarily in working memory. When the recall test is delayed for 30 seconds, however, the information in working memory fades, and the recency effect disappears.
Working memory has a basic limitation: It can hold only a limited amount of information at one time. Early research on short-term storage of information focused on memory span—how many items people can correctly recall in order. Researchers would show people increasingly long sequences of digits or letters and then ask them to recall as many of the items as they could. In 1956 American psychologist George Miller reviewed many experiments on memory span and concluded that people could hold an average of seven items in short-term memory. He referred to this limit as “the magical number seven, plus or minus two” because the results of the studies were so consistent. More recent studies have attempted to separate true storage capacity from processing capacity by using tests more complex than memory span. These studies have estimated a somewhat lower short-term storage capacity than did the earlier experiments. People can overcome such storage limitations by grouping information into chunks, or meaningful units. This topic is discussed in the Encoding and Recoding section of this article.
Working memory is critical for mental work, or thinking. Suppose you are trying to solve the arithmetic problem 64 × 9 in your head. You probably would need to perform some intermediate calculations in your head before arriving at the final answer. The ability to carry out these kinds of calculations depends on working memory capacity, which varies individually. Studies have also shown that working memory changes with age. As children grow older, their working memory capacity increases. Working memory declines in old age and in some types of brain diseases, such as Alzheimer’s disease.
Working memory capacity is correlated with intelligence (as measured by intelligence tests). This correlation has led some psychologists to argue that working memory abilities are essentially those that underlie general intelligence. The more capacity people have to hold information in mind while they think, the more intelligent they are. In addition, research suggests that there are different types of working memory. For example, the ability to hold visual images in mind seems independent from the ability to retain verbal information.

Long-Term Memory
The term long-term memory is somewhat of a catch-all phrase because it can refer to facts learned a few minutes ago, personal memories many decades old, or skills learned with practice. Generally, however, long-term memory describes a system in the brain that can store vast amounts of information on a relatively enduring basis. When you play soccer, remember what you had for lunch yesterday, recall your first birthday party, play a trivia game, or sing along to a favorite song, you draw on information and skills stored in long-term memory.
Psychologists have different theories about how information enters long-term memory. The traditional view is that that information enters short-term memory and, depending on how it is processed, may then transfer to long-term memory. However, another view is that short-term memory and long-term memory are arranged in a parallel rather than sequential fashion. That is, information may be registered simultaneously in the two systems.

There seems to be no finite capacity to long-term memory. People can learn and retain new facts and skills throughout their lives. Although older adults may show a decline in certain capacities—for example, recalling recent events—they can still profit from experience even in old age. For example, vocabulary increases over the entire life span. The brain remains plastic and capable of new learning throughout one’s lifetime, at least under normal conditions. Certain neurological diseases, such as Alzheimer’s disease, can greatly diminish the capacity for new learning.

Psychologists once thought of long-term memory as a single system. Today, most researchers distinguish three long-term memory systems: episodic memory, semantic memory, and procedural memory.

ROTE LEARNING
Rote learning represent a third area of instrumental learning in which considerable research has been undertaken, Rote learning means learning by the repetition of sequence of responses to be made in some kind or order rote learning is widely used throughout early childhood for acquiring many skills for example the multiplication table is learnt through rote learning processes with pupils repeating to himself the sequence, two times one, two times two four, two times three, and so on. Counting can also be learnt by a child only through rote learning. Many Nursery Rhymes are also learnt by rote.
Rote learning is complex, it also has the distinction of being one of the first learning phenomena and many other systems of learning are derived from the early study of rote learning and teaching methods which commensurate with his student abilities will undoubtedly bring some measure of success to his work.

LEARNING
Learning is defined as any change in behaviour that is a result of experience and that causes people to face latter situations differently.

Over Learning: - Learning out context in order words what is being learnt is not relevant or beyond the learners understanding or capability.

NA